Thursday, December 29, 2016
[33C3 TLDR] PUFs, protection, privacy, PRNGs
Takeaway: PUFs are kinda neat and if you're interested check out this talk.
[33c3 TLDR] Decoding the LoRa PHY
Matt reverse engineered the PHY layer of the proprietary and patented LoRa techology and even wrote a GNUradio plug-in for it.
He also gave an excellent introduction to basics of the LoRa technology.
Actually, it was somehow an introduction to basics of radio technology in general and I highly recommend watching his talk.
Video
[33c3 TLDR] Making Technology Inclusive Through Papercraft and Sound
From a technical perspective they had to solve some interesting problems to make the technology fast, cheap and usable. In particular, they have a pretty awesome technique using sound to upload code to the microcontrollers they use.
Takeaway: Pretty cool technology for a societally relevant goal. Check it out.
[33c3 TLDR] Tapping into the core
It is not entirely clear to me if this is "just" another case of somebody forgetting to turn of a debug facility and leaving it as a security hole or if there are actually cases when it cannot be disabled.
Video
[33c3 TLDR] Wheel of Fortune
The takeaway might be that these devices really need a hardware RNG even if it costs a little bit extra.
(Similar to Mathy's talk, maybe only watch one of them.)
Video
[33c3 TLDR] Do as I Say not as I Do: Stealth Modification of Programmable Logic Controllers I/O by Pin Control Attack
For example, switching a pin from output to input will suppress all writing to that pin without any feedback.
Video
[33c3 TLDR] A Tale of Two Skype Calls
- 3 Years After Snowden: Is Germany fighting State Surveillance?
- The Untold Story of Edward Snowden’s Escape from Hong Kong
First of all a chilling report on the state of the German surveillance machine detailing how the German intelligence agencies have gotten more money, more capabilities (under the law) and are processing more data. Often without good supervision. It is only because of Germany's attempt at an inquiry, which the two speaking journalists recorded, that we know some of the details of the mass surveillance apparatus.
At the end, instead of the regular Q&A, key witness #1 came and joined us over Skype: Edward Snowden.
Takeaway: things are getting worse, not better and we need to do more to combat this.
--
Second, a talk detailing the story of the people that kept the very same Edward Snowden safe during his stay as a refugee in Hong Kong, detailing their particular brand of self-sacrifice. Being refugees in Hong Kong, they are forced to live in squalor without rights. Government support was stripped away once their identities were known. These people, these guardian angels, now subsist on the donation efforts of third parties. Further attempts are being made to get these 7 people out of the country and to a safer place.
For the Q&A, Vanessa, one of the people that helped Snowden, skyped in and answered some of the questions pertaining to her recollection of the events as well as her current status.
Takeaway: the seven refugees that helped Edward Snowden stay hidden during his stay in Hong Kong need assistance. If you want to you can donate at the following places:
- https://fundrazr.com/snowdensguardians
- https://www.gofundme.com/snowdenguardians
Tuesday, December 27, 2016
[33c3 TLDR] How Do I Crack Satellite and Cable Pay TV?
Take away: Reverse engineering was made simpler by relatively old design with not too many countermeasures. Never underestimate the effort people are willing to invest to break your system.
Watch his talk on YouTube.
[33c3 TLDR] Everything you always wanted to know about Certificate Transparency -- Martin Schmiedecker
The takeaway message is that Certificate Transparency is great but to make it really effective clients need to check the public logs before accepting a certificate.
Martin tried to introduce the technical concepts but could not go into more detail. For a nice start, watch the Video.
[33c3 TLDR] Predicting and Abusing WPA2/802.11 Group Keys -- Mathy Vanhoef
The take-away message is actually rather short:
People standardize and implement bad RNGs and if those are used to generate cryptographic secrets it leads to vulnerabilites.
It included a few more tricks and gimmicks and I recommend you watch the Video.
Sunday, December 18, 2016
Lightweight Cryptography
Over the last decade, numerous lightweight cryptographic primitives have been proposed providing performance advantage over conventional cryptographic primitives. These primitives include block ciphers, hash functions, stream ciphers and authenticated ciphers.
Lightweight Block Ciphers
A block cipher provides a keyed pseudo-random permutation that can be used in a more complex protocol. It should be impossible for an adversary with realistic computing power to retrieve the key even if the adversary has access to a black-box model of the cipher where she is able to encrypt/decrypt plaintext of her choice. Block ciphers are normally based on either Substitution-Permutation Networks or Feistel-Networks.
The components and operations in a lightweight block cipher are typically simpler than in normal block ciphers like AES. In contrast to simplifying the round functions, the number of rounds simply increases to achieves the same security. As memory is very expensive the implementation of a S-Box as look-up table can lead to a large hardware footprint. Therefore, lightweight block ciphers have usually small (e.g. 4-bit) S-Boxes. To save further memory, lightweight block ciphers are using small block sizes (e.g. 64 or 80 bits, rather then 128). Another option is to reduce the key sizes used to sizes less than 96 bits for efficiency. Simpler key schedules improve the memory, latency and power consumption of lightweight block ciphers.
Recently, Banik et. al. showed an implementation of AES requiring just 2227 GE and latency of 246/326 cycles per byte for encryption and decryption respectively. In 2007 Bogdanov et. al. proposed PRESENT, an ultra-lightweight block cipher based on a Substitution-Permutation Network that is optimized for hardware and can be implemented with just 1075 GE. PRESENT is bit-oriented and has a hardwired diffusion layer. In 2011, Guo et. al. designed LED, an SPN cipher that is heavily based on AES. Interesting in that design is the lack of the key schedule, as it applies the same 64-bit key every four rounds to the state for LED-64. The 128-bit version simply divides the key in two 64-bit sub-keys and then alternately adds them to the state. Reducing the latency is the main goal of the block cipher PRINCE. There is no real key schedule in PRINCE, as it derives three 64-bit keys from a 128-bit master key. PRINCE is a reflection cipher, meaning that the first rounds are the inverse of the last rounds, so that the decryption of a key $k$ is identical to an encryption with key $k\oplus\alpha$ where $\alpha$ is a constant based on $\pi$. The block cipher Midori was designed for reducing the energy consumption when implemented in hardware. It has an AES-like structure and a very lightweight almost-MDS involution matrix M in the MixColumn step. In 2013, Simon and Speck have been designed by NSA. Both ciphers perform exceptionally well in both hardware and software and were recently considered for standardization. Compared to all other ciphers, no security analysis or design rational was given by the designers. Simon is hardware-oriented and based on a Feistel-Network with only the following operations: and, rotation, xor. Speck is software oriented and based on an ARX construction with the typical operations: addition, rotation, xor. Very recently, SKINNY has been published to compete with Simon. The main idead behind the design is to be efficient as possible but without sacrificing security. SKINNY is a tweakable block cipher based on the Tweakey framework with the components chosen because of the good compromise the provide between cryptographic properties and hardware costs.
Lightweight Hash Functions
The desired properties of a hash function are:
- Collision resistance: it should be not feasible to find $x$ and $y$, such that $H(x) = H(y)$
- Preimage resistance: given a hash $h$, it should be infeasible to find a message $x$ such that $H(x) = h$
- Second preimage resistance: given a message $y$, it should be infeasible to find $x\neq y$ such that $H(x) = H(y)$
PHOTON is a P-Sponge based AES-like hash function, with an internal state size of 100 to 288 bits and an output of 80 to 256 bits. The state update function is close to the LED cipher. In 2011, Bogdanov et. al. designed SPONGENT, a P-Sponge where the permutation is a modified version of the block cipher PRESENT. SipHash has a ARX structure and is inspired by BLAKE and Skein and has a digest size of 64-bits.
Lightweight Stream Ciphers
A stream cipher generates a key stream from a given key $k$ and an initialization vector $IV$, which is then simply xored with the plaintext to generate a ciphertext. It must be infeasible for an attacker to retrive the key, even if a large part of the keystream is available to the attacker. In 2008, the eSTREAM competition aimed to identify a portfolio of stream ciphers that should be suitable for widespread adoption. Three of the finalists are suitable for hardware applications in a restricted environment.
Grain was designed by Hell et. al. and is based on two finite state registers whose clocking influence each others update function to make it non linear. Grain requires 3239 GE in hardware. MICKEY v2 is based on two LFSR (linear feedback shift registers) that are irregularly clocked. MICKEY v2 requires 3600 GE in hardware. Trivium is also a finalist from the eSTREAM competition that has three LFSR's with different length. Trivium requires 3488 GE in hardware.
Lightweight Authenticated Ciphers
The aim of authenticated encryption is to provide confidentiality and integrity (i.e. data authenticity) simultaneously. In 2014, the CAESAR (Competition for Authenticated Encryption: Security, Applicability and Robustness) competition started with the aim to identify a portfolio of authenticated ciphers that offer advantages over AES-GCM and are suitable for widespread adoption.
ACORN is based on 6 LFSR's and has a state size of 293 bits. ACORN provides full security, for both, encryption and authentication. The hardware costs should be close to that of Trivium according to the designers. SCREAM is a tweakable block ciphers in the TAE (Tweakable Authenticated Encryption) mode. SCREAM is based on LS designs Robin and Fantomas. Bertoni et. al. designed Ketje that is a lightweight variant of SHA3 (i.e. Keccak). Ketje relies on the sponge construction in the MonkeyWrap mode. The internal state size is only 200 bits for Ketje-Jr and 400 bits for Ketje-Sr. Ascon is an easy to implement, sponge-based authenticated cipher with a custom tailored SPN network. It is fast in both, hardware and software even with added countermeasures against side-channel attacks. Another CAESAR candidate is the 64-bit tweakable block cipher Joltik, that is based on the Tweakey framework. Joltik is AES-like and uses the S-Box of Piccolo and the round constants of LED. The MDS matrix is involutory and non-circulant.
Tuesday, December 13, 2016
Living in a Data Obsessed Society (Part II)
The moral dimension of Cryptography, and its role on rearranging what can be done, by whom and from which data, might come to mind for several readers as well. Since the Snowden revelations, it has become a more and more central debate within the community, which I find best crystallized on the IACR distinguished lecture given by Rogaway on Asiacrypt 2015 and its accompanying paper. Technologies such as Fully Homomorphic Encryption, Secure Multiparty Computation or Differential Privacy can help mitigate some of the problems related with data gathering while retaining its processing utility. All in all, one of Ladyman's conclusions applies here: we should still question who benefits from this processing, and how. A privacy-preserving algorithm that incurs (unintended) discrimination is not a desirable one. As members of society, and as researchers, it is important that we understand the future roles and capabilities of data gathering, storing and processing. From mass surveillance, to biased news, to other forms of decision making.
Tuesday, December 6, 2016
Living in a Data Obsessed Society (Part I)
The evolution of the data infrastructure
What can go wrong with massive data gathering?
Monday, November 28, 2016
Verifiable Random Functions
Pseudorandom functions (PRFs) are a central concept in modern cryptography. A PRF is a deterministic keyed primitive guaranteeing that a computationally bounded adversary having access to PRF's outputs at chosen points, cannot distinguish between the PRF and a truly random function mapping between the same domain and range as the PRF. The pseudorandomness property in the well-known candidates follows from various computational hardness assumptions. The first number-theoretical pseudorandom functions (PRF), has been proposed in the seminal work of Goldreich, Goldwasser and Micali1. Since then, PRFs found applications in the construction of both symmetric and public-key primitives. Following the beginning of their investigation, various number-theoretical constructions targeted efficiency or enhancing the security guarantees. Recent developments of PRF s include works on key-homomorphic PRFs or functional PRFs and their variants.
A related, and more powerful concept, is the notion of verifiable random functions (VRFs). They were proposed in 1999 by
Micali, Rabin and Vadhan2.
VRFs are in some sense comparable to their simpler counterparts (PRFs), but in addition to the output values, a VRF also produces a publicly verifiable proof $\pi$ (therefore, there is also need for a public verification key). The purpose of the proofs $\pi$ is to efficiently validate the correctness of the computed outputs. The pseudorandomness property must hold, exactly as in the case of a PRF, with the noticeable difference that no proof will be released for the challenge input during the security experiment. Since the introduction of VRFs, constructions achieving adaptive security, exponentially large input spaces or security under standard assumptions were introduced. However, the construction of VRFs meeting all aforementioned constraints at the same time has been proven a challenging academic exercise. Finally, progress in this direction has been made due to the work of
Hofheinz and Jager3, who
An adaptive-secure VRF from standard assumptions
The scheme by Hofheinz and Jager has its roots in the VRF4 proposed by Lysyanskaya. In Lysyanskaya's construction, for an input point $x$ in the domain of the VRF, represented in binary as $x = (x_1,\dots, x_n)$, the corresponding output is set to the following encoding: $y = g^{\prod_{i=1}^{n} a_{i, x_i}}$, which for brevity we will denote $[\prod_{i=1}^{n} a_{i, x_i}]$. The pseudorandomness proof requires a q-type assumption. To remove it, the technique proposed in the Hofheinz and Jager paper replaces the set of scalar exponents $\{a_{1,0}, \dots, a_{n,1}\}$ with corresponding matrix exponents. A pairing is also needed for verifiability. Therefore, a point $x = (x_1,\dots, x_n)$ in the domain of the VRF will be mapped to a vector of points. Informally, the construction samples $\vec{u} \leftarrow \mathbb{Z}_p^{k}$ (p prime) and a set of $2n$ square matrices over $\mathbb{Z}_p^{k \times k}$: \( \begin{equation} \begin{aligned} \left \{ \begin{array}{cccc} {M_{1,0}} & M_{2,0} & \dots & M_{n,0}\\ {M_{1,1}} & M_{2,1} & \dots & M_{n,1}\\ \end{array} \right \} \end{aligned} \end{equation} \). The secret key is set to the plain values of the $\{ \vec{u}, M_{1,0}, \dots, M_{n,1} \}$ while the verification key will consists of the encodings (element-wise) of the entries forming the secret key. To evaluate at point $x$, one computes: $VRF(sk, x = (x_1,\dots, x_n)) = \Bigg[ \vec{u}^t \cdot \Big(\prod_{i=1}^{n}M_{i,x_i} \Big) \Bigg]$. The complete construction requires an extra step, that post-processes the output generated via the chained matrix multiplications with a randomness extractor. We omit this detail. A vital observation is that the multi-dimensional form of the secret key allows to discard the q-type assumptions, and replace it with a static one.Proof intuition
The intuition for the proof can be summarized as follows:
- during the adaptive pseudorandomness game, a property called "well-distributed outputs" ensures that all the evaluation queries except the one for the challenge will output encoded vectors $[\vec{v} = \vec{u}^t \cdot (\prod_{i=1}^{n}M_{i,x_i})]$, such that each vector but the one corresponding to the challenge belongs to a special designated rowspace. This is depicted in the figure, where the right side presents the evaluation of the challenge input $x^*$, while the left side presents the evaluation at $x\ne x^*$.
- to enforce well distributed outputs, the matrices $M_{i,x_i}$ must have special forms; for simplicity, consider $x^* = (0, 1, \dots, 0)$ of Hamming weight 1 and the corresponding secret key: \begin{equation} \begin{aligned} \vec{u}^t , \left \{ \begin{array}{cccc} U_{1,0} & L_{2,0} & \dots & U_{n,0} \\ L_{1,1} & U_{2,1} & \dots & L_{n,1} \\ \end{array} \right \} \end{aligned} \end{equation} where $L_i$ stands for an $n$-$1$ rank matrix (lower rank), while the $U_i$ denotes a full rank matrix that map between RowSpace($L_{i-1}$) and RowSpace($L_{i}$). Rowspace($L_0$) will be a randomly chosen subspace of dimension $n-1$, and $\vec{u} \not \in $RowSpace($L_0$) with overwhelming probability. Also, notice the full rank matrices occur in the positions corresponding to $x^*$, in order to ensure well-distributed outputs.
- finally, and maybe most importantly, one must take into account that the distribution of matrices used to ensure well-distributed outputs must be indistinguishable from the distribution of uniformly sampled square matrices. A hybrid argument is required for this proof with the transition between the games being based on the $n$-Rank assumption (from the Matrix-DDH family of assumptions).
References
1. Goldreich, O., Goldwasser, S., & Micali, S. (1986). How to construct random functions. Journal of the ACM (JACM), 33(4), 792-807. ↩
2. Micali, S., Rabin, M., & Vadhan, S. (1999). Verifiable random functions. In Foundations of Computer Science, 1999. 40th Annual Symposium on (pp. 120-130). IEEE.↩
3. Hofheinz, D., & Jager, T. (2016, January). Verifiable random functions from standard assumptions. In Theory of Cryptography Conference (pp. 336-362). Springer Berlin Heidelberg.↩
4. Lysyanskaya, A. (2002, August). Unique signatures and verifiable random functions from the DH-DDH separation. In Annual International Cryptology Conference (pp. 597-612). Springer Berlin Heidelberg.↩
Thursday, November 24, 2016
Recent research on attacks that "use a little leakage"
In this post, I'll summarize three fantastic talks from what was one of my favourite sessions of the ACM CCS Conference last month (session 11B: "Attacks using a little leakage"). The setting common to the three papers is a client-server set-up, where the client outsources the storage of its documents or data to a server that's not entirely trusted. Instead of using the server just for storage, the client wants to outsource some computations on this data too—keyword searches or database queries, for example. The problem is to find the right cryptographic algorithms that allow efficiently making these searches and queries while minimizing the information leaked from communication between the client and server, or from the server's computations.
- Generic Attacks on Secure Outsourced Databases (paper, talk)
Georgios Kellaris (Harvard University), George Kollios (Boston University), Kobbi Nissim (Ben-Gurion University) and Adam O'Neill (Georgetown University) - The Shadow Nemesis: Inference Attacks on Efficiently Deployable, Efficiently Searchable Encryption (paper, talk)
David Pouliot and Charles V. Wright (Portland State University) - Breaking Web Applications Built On Top of Encrypted Data (paper, talk)
Paul Grubbs (Cornell University), Richard McPherson (University of Texas, Austin), Muhammed Naveed (University of Southern California), Thomas Ristenpart and Vitaly Shmatikov (Cornell Tech)
1. Generic Attacks on Secure Outsourced Databases
This paper presents two attacks, one exploiting communication volume, and one exploiting the access pattern. "Generic" means that they apply to any kind of encryption, not necessarily deterministic, or order-preserving, or even property-preserving.
Setting | outsourced relational database (collection of records, where each record has some number of attributes) |
Adversary's goal | reconstruction of the attribute values for all records |
Model | database system is static (read-only; queries don't modify records), atomic (each record is encrypted separately), non-storage-inflating (no dummy records), and has records of a fixed length |
Assumptions about data | attribute values are ordered (say, numerically or alphabetically) |
Assumptions about queries | uniform range/interval queries (for an attribute with $N$ possible values, there are $\binom{N}{2}+N$ possible queries) |
Adversary's knowledge | set of possible attribute values |
Adversary's capabilities | passive, observe queries and either access pattern (which encrypted records are returned) or communication volume (how many encrypted records are returned) |
The big (possibly unreasonable) assumption is that the range queries must be uniform. However, as the authors point out, the attack model is otherwise weak and the security of an outsourced database shouldn't depend on the query distribution.
Attack using access pattern leakage
The adversary observes at least $N^2\cdot \log(N)$ queries, so with high probability, all of the $\binom{N}{2} + N$ queries have occurred (proof: ask a coupon collector). For each query, it sees which encrypted records were returned. Suppose the database has $n$ records, and assign a binary indicator vector $\vec{v} \in \{0,1\}^n$ to each query. A 1 in position $i$ means that the $i$th encrypted record was returned as part of the query results. The Hamming weight of this vector is the number of matching records.
The attack works as follows.
- Find one of the endpoints. Pick a query that returned all but one of the records (i.e., a query whose associated vector has Hamming weight $n-1$). Let $i_1$ be the index of the 0 in its characteristic vector.
- For $j=2$ to $n$, find a query whose characteristic vector has Hamming weight $j$, with $j-1$ of the 1's in positions $i_1,\ldots,i_{j-1}$. Let $i_j$ be the index of the other 1 in the vector.
This algorithm puts the encrypted records in order, up to reflection, and is enough for the adversary to reconstruct the plaintext! The paper also describes a reconstruction attack for the case that not all values of the domain occur in the database. It requires seeing more queries, about $N^4\cdot \log(N)$.
Attack using only communication volume
The main idea of this attack is to determine the distance between "adjacent" values. The adversary observes $q \geq N^4\cdot \log(N)$ queries. For each query, it sees how many encrypted records were returned. In the case that not all of the $N$ possible values occur in the database, the attack works as follows. (It is much simpler when they do.) Let $r_i$ be the hidden value of record $i$ (i.e., its position in the range 1 to $N$).
- Determine the approximate number of distinct queries that returned a certain number of records. Let $c_j$ be a count of the number of queries that returned $j$ records, for $0 \leq j \leq n$, so $\sum_{j=0}^n c_j = q$. Scale all of the $c_j$s by $\frac{N(N+1)}{2}\cdot \frac{1}{q}$.
- Let $d_i = r_{i+1} - r_i$ be the difference in position of the $(i+1)$st record and the $i$th record, for $i=0$ to $n$, when the $n$ records are sorted. To keep the notation simple, define $d_0 = r_1$ and $d_n = N + 1 - r_n$. Note that $c_j = \sum_{i=1}^{n+1-j} d_{i-1}\cdot d_{j + i-1}$ for $j=1$ to $n$, and $c_0 = \frac{1}{2} ( \sum_{i=0}^n {d_i}^2 - (N+1) )$.
- Factor a cleverly-constructed polynomial to recover the $d_i$s. Replace $c_0$ by $2\cdot c_0 + N + 1$. Let $F(x) = \sum_{i=0}^{n} c_{n-i}\cdot x^{i} + \sum_{i=0}^{n} c_{i}\cdot x^{n+i}$. Then $F(x)$ factors as $d(x) \cdot d^R(x)$, where $d(x) = \sum_{i=0}^n d_{i}\cdot x^i$ and $d^R(x) = \sum_{i=0}^n d_{n-i}\cdot x^i$.
- Compute the attribute values from the $d_i$s: $r_1 = d_0$ and $r_i = r_{i-1} + d_{i-1}$ for $i=2$ to $n$.
The success of this algorithm depends on $F(x)$ having only 1 factorization into two irreducible polynomials. Also, since factorization can be slow when there are many records in the database, the authors also tested a simple, brute-force algorithm for checking the $d_i$s and it performed better than factorizing in their experiments.
2. The Shadow Nemesis: Inference Attacks on Efficiently Deployable, Efficiently Searchable Encryption
This paper presents attacks on two efficiently deployable, efficiently searchable encryption (EDESE) schemes that support full-text search. The first scheme they attack is ShadowCrypt, a browser extension that transparently encrypts text fields in web applications without relying on something like client-side JavaScript code. The second is Mimesis Aegis, a privacy-preserving system for mobile platforms that fits between the application layer and the user layer.
These two EDESE schemes work by appending a list of tags (also called "opaque identifiers") to each message or document, corresponding to the keywords it contains. You can think of each tag as a PRF with key $k$ applied to the keyword $w$, so $t=PRF_k(w)$.
Setting | (web) applications that store sets of documents/messages in the cloud and allow keyword search on these documents |
Adversary's goal | determine which keywords are in a document |
Model | each document/message has a set of tags corresponding to the keywords it contains |
Assumptions about tags | the same keyword occurring in multiple documents yields the same tag |
Adversary's knowledge | auxiliary dataset providing frequency of keywords and keyword co-occurrence statistics |
Adversary's capabilities | passive, sees encrypted documents/messages and lists of tags |
What I found most interesting about this work was that the problem of determining which keywords are associated with which documents was reduced to problems on graphs!
The weighted graph matching problem is the following. Given two graphs $G=(V_G,E_G)$ and $H=(V_H,E_H)$ on $n$ vertices, each with a set of edge weights $w(E): E \rightarrow \mathbb{R}^{\geq 0}$, determine the mapping $\sigma: V_G \rightarrow V_H$ that makes the graphs most closely resemble each other. (This type of "matching" is about matching a vertex in one graph to a vertex in another graph; it has nothing to do with maximal independent sets of edges.) There are a few different possibilities for what it means for the graphs to "most closely resemble each other"—the one used in the paper is minimizing the Euclidean distance of the adjacency matrix of $G$ and the permuted adjacency matrix of $H$.
The labelled graph matching problem is just an extension of the weighted graph matching problem where each vertex also has a weight.
The two graphs that will be matched to learn which keywords are in which documents are $G$, whose vertices correspond to the $n$ most frequent keywords in the auxiliary data, and $H$, whose vertices correspond to the $n$ most frequent tags in the target data. The weight of an edge between 2 vertices is the probability that those two tags (or keywords) occur in the same encrypted document (or document in the auxiliary data set). To form an instance of the labelled graph matching problem, the vertices are assigned weights that correspond to their frequencies in the target data set or their frequencies in the auxiliary data set.
The authors implemented their weighted graph matching and labelled graph matching attacks on two data sets, based on the 2000-2002 Enron email corpus and the Ubuntu IRC chat logs from 2004-2012. Their attacks accurately recovered hundreds of the most frequent keywords—see the paper for more details about the results. And while you're checking it out, read the authors' observation about how critical it is to properly choose Bloom filter parameters when using them to replace the usual inverted index structure in a searchable encryption scheme.
3. Breaking Web Applications Built On Top of Encrypted Data
This paper is cheekily titled to reflect the particular system that it attacks—it's from the paper "Building Web Applications on Top of Encrypted Data Using Mylar". Mylar is an extension to Meteor, a JavaScript web application platform. The result is a complete client-server system that claims to protect users' data on the way to and at the server. Mylar's back-end is an instance of MongoDB, a non-relational database where the data is a collection of documents, and each document has a number of key-value pairs.
The main ingredient in Mylar is multi-key searchable encryption (MKSE), which allows users to share data. The MKSE scheme used in Mylar was built to satisfy two properties: data hiding and token hiding. One of the results of this paper is proving by counterexample that a scheme that's both data-hiding and token-hiding does not necessarily provide indistinguishable keyword encryptions and keyword tokens.
One of the things I like about this paper is the taxonomy it introduces for real-world adversarial models. A snapshot passive attack is a one-time, well, snapshot of the data stored on a server. A persistent passive attack involves observing all data stored on a server and all operations the server performs during a certain time period. An active attack is one where anything goes—the server can misbehave or even collude with users.
The main part of the paper evaluates the security of a few Mylar apps—one that was already available (kChat, a chat app), and three open-source Meteor apps that were ported to Mylar. The three apps are MDaisy, a medical appointment app, OpenDNA, an app that analyzes genomic data to identify risk groups, and MeteorShop, an e-commerce app. Before summarizing some of the paper's results, it's important to understand principals, which in Mylar are units of access control and have a name and a key pair. Every document and every user has a principal, and a principal can also apply to multiple documents.
The paper's main findings are grouped into three categories: exploiting metadata, exploiting access patterns, and active attacks. First, here are some examples of exploiting metadata in Mylar:
- The names of principals, which are unencrypted to facilitate verifying keys, can leak sensitive information. For example, in kChat, the names of user principals and chat room principals are simply usernames or email addresses and the chat room name.
- Mylar's access graph, which records the relationships between users, access control levels, and encrypted items, can leak sensitive information. For example, in MDaisy, this access graph could reveal that a particular user (a doctor or other health care professional) regularly creates appointments and shares them with the same other user (a patient). A passive snapshot attacker could combine this leakage with knowledge of the doctor's speciality to infer that a patient is being treated for a certain condition.
- The size of a MongoDB document associated to a user principal can leak sensitive information. In MDaisy, each user, whether staff or patient, has its own document. However, staff have only their names stored, while patients have additional information stored, such as date of birth.
Exploiting access patterns of searchable encryption is not new, and Mylar didn't claim to hide them, so I won't say anything further about this. The active attacks, however, are interesting, because Mylar claimed to protect data against an actively malicious server as long as none of the users who can access it use a compromised machine. This claim is false, and the paper describes attacks that arise from properties such as the server being able to forcibly add users to a "tainted" principal. After a user is added to a principal, it automatically computes and sends to the server a "delta" value that adjusts search tokens so documents encrypted with different keys can be searched. Once the malicious server receives a user's delta value for a tainted principal (whose keys it knows), it can then search for any keyword in any of the user's documents!
These three talks are evidence that we still have a long way to go to get secure, usable encryption that still preserves some functionality, whether in web applications, or outsourced databases or documents. It is hard to get things right. Even then, as the authors of the Shadow Nemesis paper point out, careful tuning of the Bloom Filter parameters thwarts their attacks on Mimesis Aegis, but there's no reason to believe that it's enough to defend against any other attack. I hope that these recent papers will inspire more secure constructions, not only more attacks.
P.S. There was some good discussion about attack vs. defence papers in the CCS panel discussion on the impact of academic security research (video).
Sunday, November 6, 2016
Hardware Canaries: Arbiters of Proper Randomness
Figure 1: Security dependencies. |
Figure 2: RNG architectures with canary numbers. |
Figure 3: Test results of the elementary ring-oscillator based RNG (from the original paper). |
Friday, October 28, 2016
soft skills, hard facts
Ruhr-University seen from Beckmanns Hof |
Monday, October 17, 2016
Supersingular isogeny Diffie-Hellman
Most post-quantum cryptography is based on lattices, codes, multivariate quadratics or hashes. See Gustavo's post for more.
A fifth category seems to slowly establish itself: Isogeny-based crypto.
These schemes are based on the difficulty of finding an isogeny between two supersingular elliptic curves. Isogenies are specific rational maps between elliptic curves which must also be a group homomorphism for the group of points on the curve.
The original proposal [Stolbunov et al., 2006] was to use the problem of finding isogenies between ordinary elliptic curves but this system was shown to be breakable with a quantum computer [Childs et al., 2010]. After that it was proposed to use supersingular elliptic curves instead [De Feo et al., 2011].
SIDH currently has significantly worse performance than lattice based key-exchange schemes but offers much smaller key-sizes. Compared to Frodo it is 15 times slower but the key size is only one twentieth. Compared to NewHope it is over 100 times slower at less than one third of the keysize. This can be relevant in scenarios like IOT where cryptographic computations require orders of magnitude less energy then actually transmitting data via the radio.
Although finding isogenies between curves is difficult, Vélu's formulas allow calculating an isogeny with a given finite subgroup as its kernel. All such isogenies are identical up to isomorphism.
Now, starting with a public curve \(E\) that is a system parameter we have both parties, Alice and Bob generate an isogeny for kernels \(\langle r_a \rangle, \langle r_b\rangle\) respectively. Let \(r_a, r_b\) be any generators of a subgroup for now. This gives us two isogenies
$$ \phi_a: E \rightarrow E_a\\
\phi_b: E \rightarrow E_b.$$
Now we would like to exchange $E_a, E_b$ between the partners and somehow derive a common $E_{ab}$ using the kernels we have used. Unfortunately, $r_a$ does not even lie on $E_b$ so we have a problem.
The solution that was proposed by De Feo et al. is to use 4 more points $P_a, P_b, Q_a, Q_b$ on $E$ as public parameters, two for each party. This allows constructing
$$r_a = m_aP_a + n_aQ_a\\
r_b = m_bP_b + n_bQ_b$$ using random integers $m_a, n_a, m_b, n_b$ appropriate for the order.
Now, after calculating the isogenies $\phi_a, \phi_b$ the parties not only exchange the curves $E_a, E_b$ but also $\phi_a(P_b), \phi_a(Q_b)$ and $\phi_b(P_a), \phi_b(Q_a)$.
Looking at the example of Alice she can now calculate
$$m_a\phi_b(P_a)+n_a\phi_b(Q_a) = \phi_b(m_aP_a + n_aQ_a) = \phi_b(r_a)$$ and Bob can perform the analogous computation. Constructing another isogeny using this $\langle \phi_b(r_a) \rangle$ and $\langle \phi_a(r_b) \rangle$ respectively gives Alice and Bob two curves $E_{ba}, E_{ab}$ which are isomorphic and their j-invariant can be used as a common secret.
I will leave you with this wonderfully formula laden image from the De Feo et al. paper showing the protocol.
Monday, October 10, 2016
Quantum computation, algorithms and some walks.. pt.1
Well, computers aren't made with cats inside. Computers use bits and registers to work. So, how is it possible to compute with a quantum computer? How is it possible to represent bits? How is it possible to take advantage of the superposition?
Quantum Notation
First, let's learn about the Dirac notation, that is commonly used in Quantum physics and in most of the literature about quantum computers. Since Blogger doesn't allow me to create mathematical equations, I will get some help from physciense blog and pick some images from them:The Dirac notation could be a little bit different. If you want to check about it, I selected some nice lecture notes in the following links: Lecture 1 and Lecture 2.
So, the bra-ket notation is just vectors and we are going to use this to represent our qubit, yes we call the bit of a quantum computer by this name. In classical computers we represent a bit with 0 and 1 but in quantum computers it is a little bit different. We can represent the states as follows:
As the image show to us, the qubit is 0,1 or a superposition of 0 and 1. However, if we measure, i.e., if we see the qubit we lose the superposition. In other words, our state collapses and we cannot take advantage of the superposition anymore. In the same way that in classical computers we have gates, the quantum computer also has gates. One very famous gate is the Hadamard gate. This gate has the property to put a qubit in the superposition state. We can see the action of this gate in the following image:
Quantum Algorithms
Now, we know what is a qubit and how we can operate with it. We can move for the next step and create some algorithms to solve problems. The most common and very well-known example came from Deutsch and Jozsa. It is known by Deutsch-Jozsa problem and consist of:- Input: f: {0,1}^n to {0,1} either constant or balanced
- Output: 0 iff the function f is constant
- Constraints: f is a black-box
If we solve this problem with a quantum computer, we are going to make exactly 1 query. The function f will be implemented as a black-box in the quantum computer and it will be:
After this, we can see that we put our qubit in a superposition state. Now, we go to our function and call our black box. The result of it can be seen as: