A new year takes off and, along with it, thousands of resolutions are formulated. Although I am not the right person to talk about them (my diet will begin next Monday), I wish to discuss a resolution that the cryptographic community as a whole has set for itself in this 2017. Because that's what people do at Real World Crypto (RWC): they talk about new threads, topics could be worth exploring during the new year, directions for their researches and interests. This year, for the first time in RWC, post-quantum cryptography (PQC) was given an entire session, clear sign that time is changing and the moment has come to bring the discussion to the real world. The message is clear: even if quantum computers are not popping up in tomorrow's newspapers, we can't postpone any longer.
A very simple reason for this was given by Rene Peralta, of the NIST PQC team, during the overture of the session: standardisation takes time, up to seven years if we start right now, and full transition takes even longer. I found Rene's presentation to be neat and direct: our public-key cryptography fails against quantum computers and our symmetric one needs some (non-drastic) modifications. The resolution is to "start thinking about it this year, possibly by November 30th, 2017". However, a question arises quite naturally: are we ready?
The other three talks of the session tried to answer in the affirmative. Among the several PQC proposals that are around in theoretical papers, two made their ways into RWC: the well-stablished lattice-based cryptography and the new-born isogeny-based cryptography, which nevertheless carries the pride and sympathy of ECC.
Lattices and funny names: NewHope and Frodo and Crystals
Lattice-based cryptography has three representatives in the run for PQC schemes. Valeria Nikolaenko showed two: the first one is called NewHope and is a key agreement protocol based on the hardness of Ring-LWE. The latter is a problem very favourable to applications because it combines sound theoretical security (worst-case to average-case reduction) to fast implementations thanks to specific choices of parameters which allow for speed-ups in the computations: NewHope turns out to be even faster than ECC and RSA, but at the price of a larger communication. However, there are some concerns on the security of LWE when the ring structured is added. Thus, Frodo ("take off the ring") is designed to achieve the same goal using only standard LWE. The drawback is a degradation in performance, since the tricks hinted above cannot be used anymore and keys are generally bigger.
The third lattice-based scheme was presented by Tancrede Lepoint and is a suite called Crystals. This is based on yet another kind of lattices: module lattices, for which it is also known a worst-case to average-case reduction. These are less structured lattices (hence possibly calming down the detractors of ring structure) in which similar implementation speed-ups are possible: the timing is indeed comparable to NewHope's, while the communication is improved.
"Make elliptic curves great again"
Michael Naehrig presented a new proposal for PQC: do you remember curves with plenty of small subgroups where to easily solve the discrete logarithm problem? Now they come in handy again: all the subgroups (of order 2 and 3) are considered to be nodes of a graph, whose edges are the isogenies (a.k.a. bijetive homorphisms between curves). In this new context, given two curves in the graph, it is difficult to come up with the isogeny linking the two. However, such a new approach doesn't really stand against other solutions: keys are small but performance is not a pro (so to speak).[The same blog post appeared here.]
No comments:
Post a Comment